MULTI-RESOLUTION ANALYSIS OF WAVELET LIKE SOLITON SOLUTION OF KdV EQUATION
نویسندگان
چکیده
1 University of Mumbai, S H Kelkar College of Arts, Commerce and Science, Devgad, (M.S.), India 2 Dunărea de Jos” University of Galati, Physics Department, Galati, 800008, Romania 3 Ain Shams University, Girls’ College, Department of Mathematics, Cairo 11757, Egypt 4 Delaware State University, Department of Physics and Engineering, Dover, DE 19901-2277, USA 5 Delaware State University, Department of Mathematical Sciences, Dover, DE 19901-2277, USA 6 King Abdulaziz University, Faculty of Science, Department of Mathematics, Jeddah, Saudi Arabia Corresponding author: Anjan BISWAS, E-mail: [email protected]
منابع مشابه
Multi-soliton of the (2+1)-dimensional Calogero-Bogoyavlenskii-Schiff equation and KdV equation
A direct rational exponential scheme is offered to construct exact multi-soliton solutions of nonlinear partial differential equation. We have considered the Calogero–Bogoyavlenskii–Schiff equation and KdV equation as two concrete examples to show efficiency of the method. As a result, one wave, two wave and three wave soliton solutions are obtained. Corresponding potential energy of the solito...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملNumerical realizations of solutions of the stochastic KdV equation
We investigate simulations of exact solutions of the stochastic Dr. Herman Numerical Realizations of Solutions f the Stochastic KdV Equation Exact Solution of Stochastic KdV Wadati 1983 The One Soliton Solution Under Noise Statistical Averages The Exact Solution for < u(x, t) > via the Diffusion Equation Solving the Diffusion Equation The Damped Stochastic KdV Asymptotics Numerical Simulation o...
متن کاملMulti-component generalizations of the Hirota-Satsuma coupled KdV equation
In this paper, we consider multi-component generalizations of the Hirota–Satsuma coupled Korteweg–de Vries (KdV) equation. By introducing a Lax pair, we present a matrix generalization of the Hirota–Satsuma coupled KdV equation, which is shown to be reduced to a vector Hirota–Satsuma coupled KdV equation. By using Hirota's bilinear method, we find a few soliton solutions to the vector Hirota–Sa...
متن کاملThe KdV hierarchy and the propagation of solitons on very long distances
The Korteweg-de Vries (KdV) equation is first derived from a general system of partial differential equations. An analysis of the linearized KdV equation satisfied by the higher order amplitudes shows that the secular-producing terms in this equation are the derivatives of the conserved densities of KdV. Using the multi-time formalism, we prove that the propagation on very long distances is gov...
متن کامل